
(~ :
'.
'~, "'.

Objects and Classes

8.1 Const Member Functions
A const member function guarantees that it will never modify any of its

class's member data. The following example shows how this works.

class aClass
{

private:
int alpha;

~JUblic:
void nonFuncO
{ alpha = 99; }
void conFuncO const
{ alpha = 99; }

Ilnon-const member function
IIOK
Ilconst member function
lIERROR: can't modify a member

The non-const function nonFuncO can modify member data alpha, but the

constant function conFuncO can't. If it tries to, a compiler error results. A

function is made into a constant function by placing the keyword canst after

the declarator but before the function body. If there is a separate function

declaration, const must be used in both declaration and definition. Member

functions that do nothing but acquire data from an object are obvious

candidates for being made const, because they don't need to modify any

data.

1. In a class definition, data or functions designated private are accessible

a. to any function in the program.

b. only if you know the password.

c. to member functions of that class.

d. only to public members of the class.

3. The dot operator (or class member access operator) connects the following two entities

(reading from left to right):

a. A class member and a class object

b. A class object and a class

c. A class and a member of that class

d. A class object and a member of that class

8. A member function can al~v~ys access the data

a. in the object of which it is a member.

b. in the class of which it is a member.

c. in any object of the class of which it is a member.

d. in the public part of its class.

10. For the object for which it was called, a const member function

a. can modify both const and non-const member data.

b. can mod~fy only const member data.

c. can modify only non-const member data .
.~

d. can modify neither const nor non-const member data.

11. Create a class called time that has separate int member data for hours, minutes, and

seconds. One constructor should initialize this data to 0, and another should initialize

it to fixed values. Another member function should display it, in 11:59:59 format. The

final member function should add two objects of type time passed as arguments. A

mainO program should create two initialized time objects (should they be const?) and

one that isn't initialized. Then it should add ~e two initialized values together,

leaving the result in the third time variable. Finally it should display.the value of this

third variable. Make appropriate member functions const.

...~~~%.-
~tvttn (S"fyr1J---

Arrays

9.1 Single-Dimensional Arrays
9.1.1 Declaring Single-Dimensional Arrays

C++ requires that you declare an array before you use it. The general syntax

for declaring an array is:

This syntax shows the following aspects of the declaration:

1. The declaration starts by stating the basic type associated with the array

elements. You can use predefined or previously defined data types.

2. The name of the array is followed by the number of elements. This

number is enclosed in square brackets. The number of array elements

must be a constant (literal or symbolic) or an expression that uses

constants.

All arrays in C++ have indices that start at O. Thus, the number of array
- -'

elements is one larger than the index of the last array element. Here are

examples of declaring arrays:

II example 1

int nIntArr[lO];

II example 2

canst int MAX = 30;

char cName[MAX);

II example 3

canst int MAX CHARS = 40;
J -

char cString[MAX _CHARS+ 1);

The first example declares the int-type array nlntArr with 10 elements. The

declaration uses the literal constant 10. Thus the indices for the first and last

array elements are 0 and 9, respectively. The second example declares the

constant MAX and uses that constant to specify the number of elements of

the char-type array cName. The third example declares the char-type array

cString. The constant expression MAX_CHARS + 1 defines the number of

elements in tlie array cString.

9.1.2 Accessing Single-Dimensional Arrays

Once you declare an array, you can access its elements using the index

operator []. The general syntax for accessing an element in an array is:

arrayName[anlndex]

The index should be in the valid range of indices-between 0 and the number

of array elements minus one. Here are some examples of accessing a.rray

elements:

const int MAX = 10;

double Nector[MAX];

for (int i = 0; i < MAX; i++)

N ector[i] == double(i) * i;

for (i = MAX - 1; i >= 0; i--)

This code snippet declares the constant MAX and uses that constant in

declaring the double-type array fVector. Thus the array has elements with

indices in the range of 0 to MAX - 1. The code uses the first for loop to

assign values to the elements of array tvector. The loop statement accesses
".;

the elements of array tv ector using the loop control variable i. The

expression tV ector[i] accesses element number i in array tV ector. The code

uses the second loop to display, in a descending order, the elements of array

tVector. Again, the loop statement accesses the elements of array

fVector using the loop control variable i.

9.1.3 Initializing Single-Dimensional Arrays

C++ allows you to initialize some or all of the elements of an array. The

general syntax for initializing an array is:

You need to observe the following rules when you initialize an array:

1. The list of initial values appears in a pair of open and close braces and

is comma-delimited. The list ends with a semicolon.

2. The list may contain a number of initial values that is equal to or less

than the number of elements in the initialized array. Otherwise, the

compiler generates a c0l11pile-time error.

3. The compiler assigns the first initializing value to the element.at index

0, the second initializing value to the element at index 1, and so on.

4. If the list contains fewer values than the number of elements in the

array, the compiler assigns zeros to the elements that do not receive

initial values from the list.

5. If you omit the number of array elements, the compiler uses the number

of initializing values in the list as the number of array elements.

Here are examples of initializing arrays:

II example 1

double fArr[5] = { 1.1,2.2,3.3,4.4,5.5 };

Ii example 2

int nArr[10] = { 1,2,3,4,5 };

II example 3

The code in example 1 declares the double-type array fArr to have 5

elements. The declaration also initializes all 5 elements with the successive

values 1.1, 2.2, 3.3, 4.4, and 5.5. The second example declares the int-type

array nArr to have 10 elements. The declaration also initializes. only the first

5 elements with the values 1, 2, 3,4, and 5. Therefore, the compiler assigns

zeros to the elements at indices 5 through 9 of array nArr. The last example

declares the char-type array cVowels and initializes the array elements with

the lowercase and uppercase vowels. Since the declaration of array

cVowels does not specify the. number of elements, the compiler uses the

number of initializing values, 10, as the number of elements in array

cVowels.

9.1.4 Declaring Arrays as Function Parameters

C++ allows you to declare arrays as parameters to functions. The syntax for

declaring such parameters is:
- .?

I I form 1: fixed parameter'

type arrayParam[numberOjElements]

II form 2: open parameter

type openArrayParam[]

The first form specifies the number of elements. Use this form when you

want an array of the specified size to be the argument for the parameter

arrayParam. This kind of parameter is called afzxed array parameter. The

second form does not specify the size of 'the array parameter, allowing the.. ',..
parameter to take arguments that are arrays of different sizes. This kind of

parameter is called an open array parameter. In this case, you typically have

an additional parameter that specifies the number of elements in the

parameter openArrayParam. Here are examples of declaring array

parameters:

double mySum(double fMyArray[MAX_ELEMS]);

double theirSum(double fTheirArray[MAX_ELEMS],

int nNumElems = MAX_ELEMS);

double yourSum(double fYourArray[], int nNumElems);

The function mySum declares the array parameterfMy Array and specifies

the size ofMAX_ELEMS. This kind of function expects the caller to pass a

double-type array that has MAX_ELEMS number of elements. Since the

function's parameter list does not have a parameter that passes the number of

elements to process, it is safe to assume that function mySum processes all

of the elements in parameter tMy Array.

The function theirSum has two parameters. The first is t.~e array parameter

fMy Array and specifies the size "of MAX ELEMS. The second is

- " nNumElems. The parameters of the function theirSum suggest that the

arguments for parameter ffheirArray must be double-type arrays with

MAX ELEMS elements. However, the presence of parameter

nN umElems may suggest that the function can process a portion of the

array ffheirArray.

The function yourSum declares the parameter fYourArray,-which is an

open double-type array. This function can take arguments that are double-

type arrays 40f different sizes. The parameter nNumElems specifies the

number of elements in the argument for parameter fY our Array. The

argument for parameter nNumElems should be equal to or less than the

number of elements in the argument for fYourArray. If not, the function

risks accessing data that lie beyond the space occupied by the array

argument.

Here are examples of calling the functions just described:

const int MAX_ELEMS = 10;

const int MAX _ARRAY = 20;

double fArrayl [MAX_ELEMS];

double fArray2[MAX_ARRA Y];

double fSum;

This code snippet declares the constants MAX ELEMS and

MAX_ARRAY, which define the number of elements in the double-type-
arrays fArrayl and fArray2, respectively. The code defines the double-type

variable fSum. Then the code snippet makes the following calls to the tested

functions:

1. Call fUnction mySum with the argument fArrayl

.I.I.•U.",.$lim.i...~~,;P:;t"'mitiJ2.iH~';rrf1·~~;~.:i~r~'i#~.~iij!·.. ~,...W:·':,@:~~~;P"t'<
~-:~.~"",'" .' , .' '.

2. Call function theirSum with the argument fArrayl. This function call

uses the default argument ofMAX_ELEMS for parameter nNumElems.

3. Call function theirSum with the arguments fArrayl and

1\'1AX ELEMS / 2

4. Call function yourSum vvith the arguments fArrayl and

MAX ELEMS

5. Call function yourSum with the arguments fArray2 and

MAX ARRAY

The code snippet shows that function yourSum is very flexible, since it

handles arrays of different sizes.

9.2 Multidimensional Arrays

9.2.1 Declaring Multidimensional Arrays

C++ requires that you declare a multidimensional array before you use it.

The general syntax for declaring a multidimensional array is:
·type arrayName[numberOjElement 1][numberOjElement2];

The above syntax shows the following aspects:

1. The declaration starts by stating the basic type associated with the array

elements. You can use predefined or previously defined data types.

2. The name of the array is followed by a sequence of the number of

elements for the various dimensions. These numbers appear in square

brackets. Each number of elements must be, a constant (literal or

symbolic) or an expression that uses constants.

All multidimensional arrays in e++ have indices that start. at O. Thus, the

number of array elements in each dimension is one value higher than the

index of the last element in that dimension.

II example 1

int nlntCube[20][1 0][5];

II example 2

const int MAX_ROWS = 50;

const int MAX_ COLS = 20;

double fMatrix[MAX_ROWS][MAX_COLS];

const int MAX_ROWS = 30;

const int MAX_COLS = 10;

char cNarneArray[MAX_ ROWS+ I][MAX _COLS];

The first example declares the int-type three-dimensional array

nIntCube with 20 by 10 by 5 elements. The declaration uses the literal

constants 20, 10, and 5. Thus, the indices for the first dimension are in the

range of 0 to 19, the indices for the second dimension are in the range of 0 to

9, and the indices for the third dimension are in the range of 0 to 4.

The second example declares the constants MAX ROWS and

MAX_COLS and uses these constants to specify the number of rows and

columns of the double-type matrix Matrix.

The third example declares the char-type matrix cNameArray. The

constant expression MAX_ROWS + 1 defines the number of rows in the-
array cNameArray. The constant 'MAX_COLS defines 'the number of

columns in the array cNameArray.

9.2.2 Accessing Multidimensional Arrays

Once you declare a multidimensional array, you can access it elements using

the index operator []. The general syntax for accessing an element in a

multidimensional array is:

arrayN ame [IndexOjDime nsion 1][IndcxOfDinzensi on.?]...

The indices for the various dimensions should be in the valid ranges- -

between 0 and the number of array elements for the dimension'Iilinus one.

Here is an example of accessing muitidimensional array elements:.•.
const int MAX_ROWS = 10;

const int MAX_COLS = 20;

double fMatrix[MAX_ROWS][MAX _COLS];

for (int i = 0; i < MAX ROWS; i++)

for (intj = O;j <MAX_COLS;j++)

fMatrix[i][j] = double(2 + ie * j)

This code snippet declares the constants MAX ROWS and

MAX_COLS and uses these constants in declaring the double-type two-

dimensional array f.l\.1atrix. Thus the a...rrayhas rows with indices in the

range of 0 to MAX_ROWS -1 and columns with indices in the range of 0

to MAX_COLS -1. The code snippet uses nested for loops to initialize

the elements of the array fMatrix. Notice that the last assignment statement

uses the syntax fMatrix[i][j] and not fMatrix[i, j] or tM:atrix(i,j) as is the -

case in Pascal and BASIC, respectively.

9:2.3 Initializing M~~tidimensional Arrays

C++ allows you to initialize some or all of the elements of a

multidimensional array. - The general syntax for . initializing a

multidimensional array is:

type arrayName[numberOjElementl][numberOjElement2] = {.valueO ,... ,valueN };

You need to observe the following rules when you initialize a

multidimensional array:

1. The list of initial values appears in a pair of open and close braces and is

comma-delimited.

2. The list may contain a number of initial values that is equal to or Jess

than the total number of elements in the initialized array. Otherwise, the

compiler generates a compile-time error.

.• 3. The compiler assigns the initializing values in the sequence discussed in

the sidebar "Initializing Multidimensional Arrays."

4. If the list contains fewer values than the number of elements in the array,

the compiler assigns zeros to the elements that do not receive initial

values from the list.

Here are examples of initializing multidimensional arrays:

II example 1

double fMat[3][2] = { 1.1,2.2,3.3,4.4,5.5,6.6 };

II example 2

int nMat[5][2] = { 1,2,3,4,5 };

II example 3

double fMat[3][2] = {{ 1.1, 2.2}, {3.3, 4.4}, {5.5, 6.6} };

The code in example 1 declares the double~type two-dimensional array

fMat to have three rows and two columns. The declaration also initializes all

six elements with the values 1.1, 2.2, 3.3, 4.4, 5.5, and 6.6. The compiler

stores these values sequentially in elements fM:at[O][O],flVlat[O][I], and so

on. The second example declares the int-type matrix nMat to have five rows

and two colwnns. The declaration also initializes only the first five elements

(nMat[O][0], nMat[O] [1], nMat[l] [0], nMat[l] [1], and nMat[2] [0]) with..• ,';.

the values 1, 2, 3, 4, and 5. Therefore, the compiler as~igns zeros to the

-"

"Wi';;~:J':;(i:.."

remaining matrix elements. The third example is similar to the second

example but it initializes the multi-dimensional array as an array of arrays.

The initializing values for each subarray are enclosed in braces and

separated by commas

9.2.4 Declaring Multidimensional Arrays as Function Parameters

C++ allows you to declare multidimensional anays as parameters In

functions. The programming language supports two syntaxes, one for fixed

arrays and the other one for open arrays:

// fixed array parameter

type parameterName[numberOjElement 1][numberOjElement2]

II open-array parameter

type parameterName[] [numberOjElement2]

The fixed-array parameter states the number of elements for each dimension.

By contrast, the open array parameter lists the number of elements for the

second dimension and up. In other words, the open parameter leaves the

number of .elements for the frrst dimension unspecified.

Here are examples of declaring multidimensional array parameters:

double mySum(double fMyMatrix[MAX _ROWS 1][MAX _COLS]);

double theirSum(double ffheirMatrix[MAX_ROWS2](MAX_COLS],

- iilt nNumRows = MAX_ROWS!,

int nNumCols = MAX_COLS);

double yourSum(double fYourMatrix[][MAX_COLS],

int nNumRows, int nNumCols);

The function mySum declares the matrix parameter fMyMatrix and

specifies that the parameter has MA.?'_ROWSI rows and
.. ;'so"

MAX_COLS columns. This kind of function expects the caller to pass a

double-type matrix that also has MAX_ROWSl rows and

MAX COLS columns. Since the function's parameter list does not have

parameters that pass the number of rows and columns to process, it is safe to

assume that function mySum processes all of t11,; elements in parameter

l'Myl\latrix.

The function theirSum has three parameters. The first one is the matrix

parameter fMyMatrix and specifies MAX ROWS2 rows and

MAX_COLS columns. The second and third parameters, nNumRows and

nNumCols, specify the number of rows and columns, .respectively, to

process. Thus, the first parameter suggests that the arguments for parameter

ffheirMatrix must be double-type matrices with ~ROWS2 rows and

MAX COLS columns. However, the presence of parameters

nNumRows and nNumCols might suggest that the· function can process a

portion of the matrix ITheirMatrix.

The function yourSum declares the parameter tyourMatrix, which is an

open double-type matrix. This function can take arguments that are double- .
_ J

type matrices of different numbers of rows. However, the arguments for the

matrix parameter must have -MAX_ COLS columns. The parameters

nNumRows and nNumCols specify the number of matrix rows and

columns, respectively, to process. The argument for parameter

nNumRows should be equal to or less than the number of rows in the

argument for tyourMatrix. If not, the function risks accessing data that lie

beyond the space occupied by the matrix argument.

Here are examples of calling these functions:
const int MAX_ROWS 1 = 10;

const int MAX_ROWS2 = 10;

const int MAX_COLS = 20;

double flv1atrixl [MAX_ROWS]][MAX_COLS];

double fMatrix2[MAX _ROWS2] [MAX _COLS];

double £Sum;

fSum = yourSum(fMatrix2, MAX_ROWS2, MAX_COLS);

This code snippet declares the constants MAX_ROWSl, MAX_ROWS2,

and ~ COLS, which define the number of rows and columns in the

double-type matrices fMatrixl and fMatrix2, respectively. The code

defines the double-type variable fSum. It then makes the following calls to
- -'the tested functions:

1. Call function mySum with the argument fMatrixl

2. Call function theirSum with the argument fMatrix2. This function call

uses the default argurp.entsof MAX_ROWS2 and MAX COLS for

parameters nNumRows and nNumCols, respectively.

3. Call function theirSum with the arguments

4. Call function yourSum with the arguments Matrix1, MAX_ROWSl,~ -~~

5. Calls function yourSum with the arguments fMatrix2, MAX_ROWS2,

and MAX_COLS

The code snippet shows that function yourSum is very flexible, SInce it

handles matrices of different row sizes.

1. Answer each of the following:

- a) Lists and tables of values are stored in _

b) The elements of an. array are related by the fact that they have the same
____ and _

c) The number used to refer to a particular element of an array is called its _

d) A should be used to declare the size of an array, because it makes the

program more scalable.

e) An array that uses two subscripts is referred to as a array.

2. State whether the following are true or false. lfthe answer is false, explain why.

a) An mTaycan store many different types of values.

b) An array subscript should normally be of data type float.

c) If there are fewer initializers in an initializer list than the number of elements in the

array, the remaining elegu;nts are automatically initialized to the last value in the list

of initializers.

d) -It is an error if an initializer list contains more initializers than· there are elements in

the array.

e) An individual array element that is passed to a function and modified in that function

will contain the modified value when the called function completes execution.

3. Answer the following questions regarding an array called fractions:

a) Defme a constant variable arraySize initialized to 10.

b) Declare all array with arraySize elements of type douqle, and initialize the elements

to O.

c) Name the fourth element from the beginning of the array.

d) Refer to array element 4.

e) Assign the value 1.667 to array element 9.

f) Assign the value 3.333 to the seventh element of the array.

g) Print array elements 6 and 9 with two digits of precision to the right of the decimal

point, and show the output that is actually displayed on the screen.

h) Print all the elements of the array using a for repetition structure. Define the integer

variable x as a control variable for the loop. Show the output.

4. Answer the following questions regarding an array called table:

a) Declare the array to be an integer array anq to have 3 rows and 3 columns. Assume

that the constant variable arraySize has been defined to be 3.

b) How many elements does the array contain?

c) Use a for repetition structure to initialize each element of the array to the sum of its

subscripts. Assume that the integer variables x and y are declared as control variables.

d) Write a program segment to print the values of each element of an array table in

tabular format with 3 rows and 3 columns. Assume that the array was initialized with

the declaration and the integer variables x and y are declared as control variables.

Show the output.

int table[arraySize][arraySize] =
{{ I, 8 1, 1 2, 4, 6 }, { 5 } };

5. Find the error in each of the following program segments and correct the error:

a) #include <iostream>;

b) arraySize = 10; //arraySize was declared const

c) Assume that

intb[10] = {O};

for (in! i = 0; i <= 10; i++)

b[i] = 1;

d) Assume that

int a[2][2] = { { 1, 2 }, { 3, 4 } };

a[1, 1] = 5;

6. Fill in the blanks in each of the following:

a) C++ stores lists of values in _

b) The elements of an array are related by the fact that they _

c) When referring to an array element, the position number contained within square
--brackets is called a _

d) The names of the four elements of array p are _

____ and _

e) Naming an array, stating its type and specifying the number of elements in the

array is called the array.

f) The process of placing the elements of an array into either ascending or

descending order is called _

g) In a double-subscripted array, the first subscript (by convention) identifies the

_____ of an element, and the second subscript (by convention) identifies

the of an element.-----
h) An m-by-n array, contains_____ rows, columns and

elements.-" -----
i) The name of the element in row 3 and column 5 of array d is _

7. State which of the following are true and which are false; for those that are false,

explain why they are false.

a) To refer to a particular location or element within an array, we specify the name of-the array and the value of the particular element.

b) An array declaration reserves space for the array.

c) To indicate that 100 locations should be reserved for int~ger array p, the

programmer writes the declaration p[100];
4 "'.,;:

d) A C++ program that initializes the elements of a IS-element array to zero must

contain at least one for statement.

e) A C++ program that totals the elements ofa double-subscripted array must contain

nested for statements.

8. Write C-i-+ statements to accomplish each of the following:

a) Display the value of the seventh element of character array f.

b) Input a value into element 4 of single-subscripted floating-point array b.

c) Initialize each of the S elements of single-subscripted integer array g to 8.

d) Total and print the elements of floating-point array c of 100 ele~ents.

e) Copy array a into the first portion of array b. Assume double a[11], b[34];

t} Determine and print the smallest and largest values contained in 99-element

floating-point array w.

9. Consider a 2-by-3 integer array t.

a) Write a declaration for t.

b) How many rows does t have?

c) How many columns does t have?

d) How many elements does t have?

e) Write the names of-all the elements in the second row of t.

t) Write the names of all the elements in the third column oft.

g) Write a single statement that sets the element oft in row 1 and column 2 to zero.

h) Write a series of statements that initialize each.element of t to zero. Do not use a

loop.

i) Write a nested for structure that initializes each element of t to zero.

j) Write a statement that inputs the values for the elements oft from the terminal.-k) Write a series of statements that determine and print the smallest value in.array t.

l) Write a statement that displays the elements of the first row oft.

m) Write a statement that totals u'1e elements of the fourth column C?ft.

n) Write a series of statements that prints the array t in neat, tabular format. List the

column subscripts as headings across the top and list the row subscripts at the left

of each row.

10. Write single statements that perform the following single-subscripted array

operations:

a) Initialize the 10 elements of integer array counts to zero.

b) Add 1 to each of the 15 elements of integer array bonus.

c) Read 12 values for double array monthlyTemperatures from the keyboard.
~

d) Print the 5 values of integer array bestScores in column format.

11. Find the error(s) in each of the following statements:

a) Assume that: char str[5];

cin» str; II User types hello

b) Assume that: int a[3];

cout «a[1] « " " « a[2] « " " « a[3] «end!;

c) double iT 3] = { 1.1, 10.01,100.001, 1000.0001 };

d) Assume that: double d[2][10];

d[1, 9] = 2.345;

12. Use a single-subscripted array to solve the following problem. Read in 20 numbers,

each of which is between 10 and 100, inclusive. As each number is read, print it only

if it is not a duplicate of a number already read.

13. Use a double-subscripted array to solve the following problem. A company has four

salespeople (1 to 4) who sell five different products (1 to 5). Once a day, each-salesperson passes in a slip for each different type of product sold. Each slip contains

the following:

a) The salesperson number

b) The product number
-4

c) The total dollar value of that product sold that day

14. (Print an array) Write a recursive function printArray that takes an array and the size

of the array as arguments and returns nothing. The function should stop processing

and retwn when it receives an array of size zero.

15. (Print a string backwards) Write a recursive function stringReverse that takes a

character array containing a string as an argument, prints the string backwards and

returns nothing. The function should stop processing and return when the terminating

null character is encountered.

16. (Find the minimum value in an array) Write a recursive function recursiveMinimum

that takes an integer atray and the array size as arguments and returns the sm~lest

element of the array. The function should stop processing and return when it receives

an array of 1 element.

Lecture 10

C-St'tings

10.1 C-String Variables
In this lecture. G-strings are decsribed as arrays of type char. The following

example example defines a single C-string variable. It asks the user to enter

a string, and places this string in the string variable. Then it displays the

string.

#include <iostream.h>
intmainO
{

con.st int MAX = 80;
char str[MAX];

//max characters in string
//string variable str

cout «"Enter a string: ";
cin » str; //put string in str

//display string from str
cout « "You entered: " « str « endl;
return 0;

10.2 Avoiding Buffer Overflow

It is possible to tell the » operator to limit the number of characters it
•.", a"

places in an array to avoid inserting array elements outside an array.

#include <iostream.h>
#include <iomanip.h>
int mainQ
{

const int MAX = 20;
char str[MAX];
cout « "\nEnter a string: ";
cin·» setw(1-1AX) »-str;

//max characters ill string
//strlng variable str

//put string in str,
// no more than J\.fAX chars

cout« "You entered: ".« str« endI;
return 0;

10.3 String Constants
You can initialize a string to a constant value when you define it. Here's an

example:
#include <iostream.h>
int main()
{

char strD = "Farewell! thou art too dear for my possessing.";
cout « str « endl;
return 0;

}

10.4 Reading Embedded Blanks
To read text containing blanks we us~ another function, cin.get(). The

followmg example shows how it's used.
#include <iostream.h>
intmainO
{

const int MAX = 80;
char str[MAX];
cout « "\nEnter a string: '";
cin.get(str, MAX); I/put StrLllgin str
cont« "You entered: "« str« end1;
return 0;

//max characters in string
//string variable str

10.5 Reading Multiple Lines

The cin::getO function can take a third argument. This argument specifies

" the character that tells the function to stop reading. The default value for this

argument is the newline ('\n') charact~r, but if you call :the functiotl with

,some other character for this argument, the default will be overridden by the

specified character. In the ne~t example we call the function with a dollar

sign ('$') as the third argument:
#inc1ude <iostream.h>
const int 1ifAX = 2000;
char str(1\tfAX];
int mainO

//max characters in string
//string variable str

cout « "\nEnter a string:\n";
cin.get(str;--l.\1.AX,"$'); //tem1inate with $
cout« "You entered:\n" «str« end1;
return '0;

}
Remember, you must still press Enter after typing the '$' character.

10.6 Copying a String the Hard Way

The following program creates a string constant, strl, and a string variable,

str2. It then uses a for loop to copy the string constant to the string variable.

The copying is done one character at a time ...
#inc1ude <iostream.h>
#include <cstringli>
int mainO
{

char strl (] == "Oh, Captain, my Captain! ";
const int MAX = 80;
char str2[MAX];
for(int j=O; j<strlen(strl); j++)
str20] = strl [j];
str2[j] = '\0';
cout« str2 «endl;
return 0;

//size of str2 buffer
//empty string
//copy strlen characters
1/ from str 1 to str2
//insert NULL at end
//display str2

